当学生说到这里,我及时引导他们思考,这道题虽然有无数个答案,但看到这样的题目应从哪几方面想呢?学生通过讨论总结出可以从以下三个方面入手:
⑴特殊数“0”,3/4× ( 0 )﹦( 0 ) ×4/7﹦5/6× ( 0 ) ﹦0。
⑵倒数的意义,3/4×(4/3)﹦(7/4)×4/7﹦5/6×(6/5)﹦1。
⑶ 取样求解,3/4×( )﹦( )×4/7﹦5/6×( )﹦任何数,然后分别解三个方程。
一个小小的改动,活跃了课堂气氛,为学生创造性学习提供了更加广阔的思维舞台。
二、营造环境,培养创新思维
一个良好的育人环境,一个充满创新思维的环境可以激发学生创新思维的发展,可以让他们展开想象的翅膀,在知识的海洋了里遨游。
在进行“口算加减法”时,例题是27+28,引入有的学生采用尾数相加的方法:7+8=15,20+30=50,50+15=65;有的将一个加数进行分解:20+38=58,58+7=65,这两种方法都比较常用。我在充分肯定学生的成绩后提问:“谁还能想出不同的方法?”经过思考,有一位同学站起来说:“可以先把38与27的差算出来得11(38—27=11),再用27乘以2得54(27×2=54),最后将54与11相加得65(54+11=65)。我先是一惊他的想法很独特,便问他:“你为什么要用27×2呢?”他说:“因为前面有一个27,38里面也有一个27,所以用27×2=54,54再加上他们的差就是答案。”我觉得这样的方法太奇妙了,也很新鲜,我在全班表扬了他。到了第二天,有这样一道题:“养鸡场有母鸡1225只,第一天下了1118各蛋,第一天比第二天多下了109个。两天一共下了多少个蛋?”大部分同学这样做:1118+109=1227(个)、1227+1118=2345(个)。也许是受了昨天的影响。有一位学生这样做:
1118×2=2236(个)2236+109=2345(个)。这一方法咋一看似乎不合解题思路,但是细想来,学生已进行了较复杂的思维过程。其中有求几个相同数之和的思考:(第一天比第二天多109个,其中肯定还有个1118。)整个过程,充分体现了学生得分析综合能力。这节课,除了适时地在解题策略方面给孩子们启发和诱导外,更给他们营造了一个民主、和谐、愉快的课堂氛围。从而自主、创造性的开展学习。
孩子的潜能是巨大的,重在教师的开发和引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力”。因此在教学中,我们要重视学生的奇妙想法,重视他们创造的火花。只有这样才能培养出具有创新精神的时代新人!